Fixed-point tile sets and their applications

Andrei Romashchenko, joint work with Bruno Durand and Alexander Shen

June 7, 2013

Color: element of a finite set C

Color: element of a finite set C

Tile: element of C^4

Color: element of a finite set C

Tile: element of C^4

Tile set: a set $\tau \subset C^4$

Color: element of a finite set C

Tile: element of C^4

Tile set: a set $\tau \subset C^4$

Tiling: a mapping $U \colon \mathbb{Z}^2 \to \tau$

U(i,j).right = U(i+1,j).left etc.

Color: element of a finite set C

Tile: element of C^4

Tile set: a set $\tau \subset C^4$

Tiling: a mapping $U \colon \mathbb{Z}^2 \to \tau$

U(i,j).right = U(i+1,j).left etc.

The intuition behind: the simplest version of SFT

Color: element of a finite set C

Tile: element of C^4

Tile set: a set $\tau \subset C^4$

Tiling: a mapping $U \colon \mathbb{Z}^2 \to \tau$

U(i,j).right = U(i+1,j).left etc.

The intuition behind: the simplest version of SFT (a finite family of local constraints).

Color: element of a finite set C

Tile: element of C^4

Tile set: a set $\tau \subset C^4$

Tiling: a mapping $U \colon \mathbb{Z}^2 \to \tau$

U(i,j).right = U(i+1,j).left etc.

The intuition behind: the simplest version of SFT (a finite family of local constraints).

Motivations for the definition: a simple framework for natural problems from logic, dynamical systems,... even from physics.

Tiling: a mapping $U \colon \mathbb{Z}^2 \to \tau$ U(i,j).right = U(i+1,j).left etc.

Tiling: a mapping $U: \mathbb{Z}^2 \to \tau$

U(i,j).right = U(i+1,j).left etc.

 $T \in \mathbb{Z}^2$ is a period if U(x+T) = U(x) for all x.

Tiling: a mapping $U: \mathbb{Z}^2 \to \tau$ U(i,j).right = U(i+1,j).left etc.

 $T \in \mathbb{Z}^2$ is a period if U(x+T) = U(x) for all x.

Theorem (Berger): There exists a tile set that allows some tilings but only aperiodic tilings are possible.

Why the classic constructions do not look "robust"

Why the classic constructions do not look "robust"

▶ Tilings aperiodic, but close to periodic;

Why the classic constructions do not look "robust"

- Tilings aperiodic, but close to periodic;
- ► There are periodic configurations that are almost tilings (sparse set of tiling errors)

every shift changes a significant fraction of positions

- every shift changes a significant fraction of positions
- being far from any periodic

- every shift changes a significant fraction of positions
- being far from any periodic
- high density of information in each part of the tiling

- every shift changes a significant fraction of positions
- being far from any periodic
- high density of information in each part of the tiling (= high Kolmogorov complexity of each square in the configuration)

- every shift changes a significant fraction of positions
- being far from any periodic
- high density of information in each part of the tiling (= high Kolmogorov complexity of each square in the configuration)

Such configurations do exist.

- every shift changes a significant fraction of positions
- being far from any periodic
- high density of information in each part of the tiling (= high Kolmogorov complexity of each square in the configuration)

Such configurations do exist. Moreover, they can be enforced by tiling rules!

Main tool: self-similar aperiodic tile set based on fixed-point construction (Kleene recursion theorem) "New and simple proof" of Berger's theorem.

"New and simple proof" of Berger's theorem.

Really new?

"New and simple proof" of Berger's theorem.

Really new?

Self-referential statements. Liar paradox. Gödel. Kleene.

"New and simple proof" of Berger's theorem.

Really new?

Self-referential statements. Liar paradox. Gödel. Kleene.

John von Neumann, Theory of Self-reproducible Automata (1966).

"New and simple proof" of Berger's theorem.

Really new?

Self-referential statements. Liar paradox. Gödel. Kleene.

John von Neumann, Theory of Self-reproducible Automata (1966).

Peter Gacs.

"New and simple proof" of Berger's theorem.

Really new?

Self-referential statements. Liar paradox. Gödel. Kleene.

John von Neumann, Theory of Self-reproducible Automata (1966).

Peter Gacs.

Really simple?

"New and simple proof" of Berger's theorem.

Really new?

Self-referential statements. Liar paradox. Gödel. Kleene

John von Neumann, Theory of Self-reproducible Automata (1966).

Peter Gacs.

Really simple?

Not in terms of the number of tiles.

Fix a tile set τ and number N > 1.

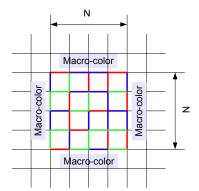
Fix a tile set τ and number N > 1.

Macro-tile: an $N \times N$ square made of matching tiles

Fix a tile set τ and number N > 1.

Macro-tile: an $N \times N$ square made of matching tiles Some set ρ of $N \times N$ -macrotiles is *simulated* by τ if every τ -tiling can be uniquely split into macrotiles by $N \times N$ grid.

Macro-tile:



Example 1: trivial tile set (only one color)

Example 1: trivial tile set (only one color)

Example 2: a tile set that simulates a trivial tile set

Example 1: trivial tile set (only one color)

Example 2: a tile set that simulates a trivial tile set

$$(i, j + 1)$$

$$(i, j)$$

$$(i, j)$$

$$(i + 1, j)$$

	N				
	(0, 0)			(N-1, 0)	
(0,N-1)					(0, N-1)
(0, 0)					(0, 0)
	(0, 0)	•		(N-1, 0)	

Self-similar tile set: a tile set that simulates a set of macrotiles isomorphic to itself.

Self-similar tile set: a tile set that simulates a set of macrotiles isomorphic to itself.

Theorem: Self-similar tile set is aperiodic

Self-similar tile set: a tile set that simulates a set of macrotiles isomorphic to itself.

Theorem: Self-similar tile set is aperiodic

Folklore: many of aperiodic tile sets are self-similar.

Encoding of a tile set:

Encoding of a tile set:

▶ colors are k-bit strings: $C = \mathbb{B}^k$

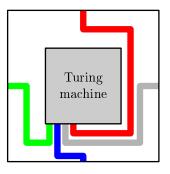
Encoding of a tile set:

- colors are k-bit strings: $C = \mathbb{B}^k$
- ▶ set of tiles (a subset of C^4) presented as a predicate $R(x_1, x_2, x_3, x_4)$ whose arguments are bit strings

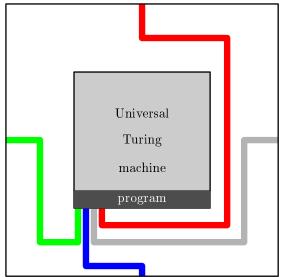
Encoding of a tile set:

- colors are k-bit strings: $C = \mathbb{B}^k$
- ▶ set of tiles (a subset of C^4) presented as a predicate $R(x_1, x_2, x_3, x_4)$ whose arguments are bit strings
- tile set is presented as TM that accepts quadruples of colors that are tiles

Implementation scheme:



Using O(1) additional colors: universal TM + program



A fixed point: simulating tile set = simulated tile set

A fixed point: simulating tile set = simulated tile set Kleene recursion theorem: for any transformation π of programs there is a program p such that p and $\pi(p)$ produce the same output.

A fixed point: simulating tile set = simulated tile set

Kleene recursion theorem: for any transformation π of programs there is a program p such that p and $\pi(p)$ produce the same output.

The intuition: if your program needs to access its own text, it is allowed to do it.

A fixed point: simulating tile set = simulated tile set

Kleene recursion theorem: for any transformation π of programs there is a program p such that p and $\pi(p)$ produce the same output.

The intuition: if your program needs to access its own text, it is allowed to do it.

Technical remark: easy to implement a UTM that can access the bits of the simulating program.

 $2 \log N + O(1)$ bits zone for color bits

 $2 \log N + O(1)$ bits zone for color bits coordinate matching rules

 $2 \log N + O(1)$ bits zone for color bits coordinate matching rules bit wires implementation

 $2 \log N + O(1)$ bits zone for color bits coordinate matching rules bit wires implementation

UTM rules implementation

 $2 \log N + O(1)$ bits zone for color bits coordinate matching rules bit wires implementation UTM rules implementation checking the program

variable zoom factor (easy)

- variable zoom factor (easy)
- undecidability (easy)

- variable zoom factor (easy)
- undecidability (easy)
- ▶ robustness (tricky: some detail below)
- strong aperiodicity (not hard: some detail below)

- variable zoom factor (easy)
- undecidability (easy)
- robustness (tricky: some detail below)
- strong aperiodicity (not hard: some detail below)
- high Kolmogorov complexity (more involved, beyond this talk)

What is "sparse"?

What is "sparse"?

 B_{ε} : Bernoulli distribution where each cell belongs to a random set with probability ε and different cells are independent

What is "sparse"?

 B_{ε} : Bernoulli distribution where each cell belongs to a random set with probability ε and different cells are independent

The notion of "sparse set" is reasonable if for small enough ε a B_{ε} -random set is sparse with probability 1

What is "correction"?

What is "correction"?

Besicovitch distance between two mappings $\mathbb{Z}^2 \to \tau$: the limsup of the distances in $N \times N$ centered squares.

What is "correction"?

Besicovitch distance between two mappings $\mathbb{Z}^2 \to \tau$: the limsup of the distances in $N \times N$ centered squares.

Distance in a square: the fraction of cells where two configurations differ.

Theorem: there exists a tile set τ such that for small enough ε the following is true for B_{ε} -almost all sets H:

every tiling of $\mathbb{Z}^2 \setminus H$ is at least 1/10-Besicovitch far from every periodic mapping

Making the construction robust

Making the construction robust

1. introduce redundancy (every tile "knows" information about its neighbors) \Rightarrow we correct small errors (e.g., 2 × 2 holes)

Making the construction robust

1. introduce redundancy (every tile "knows" information about its neighbors) \Rightarrow we correct small errors (e.g., 2 × 2 holes)

2. a miracle: self-similarity \Rightarrow we can correct an error of any size!

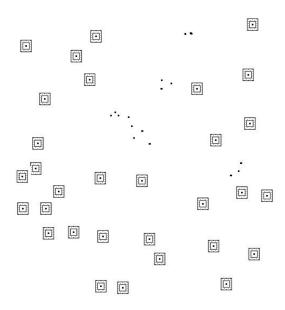
Making the construction robust

1. introduce redundancy (every tile "knows" information about its neighbors) \Rightarrow we correct small errors (e.g., 2 × 2 holes)

- 2. a miracle: self-similarity \Rightarrow we can correct an error of any size!
- 3. a real miracle: we can correct a *random* set of miracles (with prob 1)

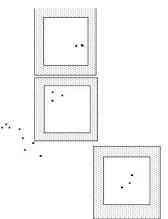
A B_{ε} -random set consists of isolated "islands" of different levels

Isolated 0-level islands:



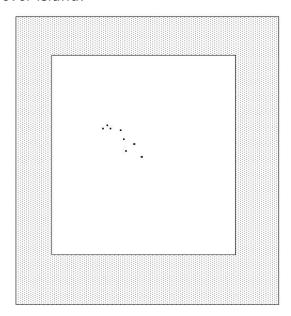
Clean up 0-level islands:

Isolated 1-level islands:



Clean up 1-level islands:

2-level island:



With probability 1 the cleaning procedure converges. Moreover, with probability 1 only the fraction $O(\varepsilon)$ of points is involved in the procedure.

Implement the Thue–Morse substitution rule:

$$0 \to \left(\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array}\right), \quad 1 \to \left(\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\right)$$

Implement the Thue–Morse substitution rule:

$$0 \to \left(\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array}\right), \quad 1 \to \left(\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\right)$$

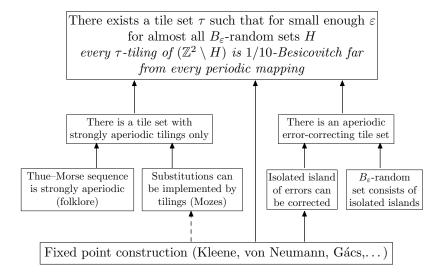
$$0 o \left(egin{array}{ccc} 0 & 1 \\ 1 & 0 \end{array}
ight) o \left(egin{array}{ccc} 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 \end{array}
ight) o \cdots$$

Implement the Thue–Morse substitution rule:

$$0 \to \left(\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array}\right), \quad 1 \to \left(\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\right)$$

$$0 \to \left(\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array}\right) \to \left(\begin{array}{ccc} 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 \end{array}\right) \to \cdots$$

Lemma. The limit configuration of the TM substitution rule is strongly aperiodic.



Thank you!