Circular Proofs for Gödel-Löb Logic

Daniyar S. Shamkanov daniyar.shamkanov@gmail.com

June 7, 2013

Gödel-Löb logic

Axioms

- Boolean tautologies
- ▶ $\Box(\Box A \to A) \to \Box A$ (Löb's axiom)

Rules

$$\frac{A, A \to B}{B} \qquad \frac{A}{\Box A}$$

Gödel-Löb logic

Axioms

- Boolean tautologies
- $\Box (A \to B) \to (\Box A \to \Box B)$
- ▶ $\Box(\Box A \rightarrow A) \rightarrow \Box A$ (Löb's axiom)

Rules

$$\frac{A, A \to B}{B} \qquad \frac{A}{\Box A}$$

GL is sound and complete w.r.t. the arithmetical semantics, where $\Box A$ corresponds to "A is provable in Peano arithmetic".

Sequent calculus syntax

Formulas are are given by:

$$A ::= P \mid \overline{P} \mid \top \mid \bot \mid (A \land A) \mid (A \lor A) \mid \Box A \mid \Diamond A.$$

Sequent calculus syntax

Formulas are are given by:

$$A ::= P \mid \overline{P} \mid \top \mid \bot \mid (A \land A) \mid (A \lor A) \mid \Box A \mid \Diamond A.$$

Sequents are finite multisets of formulas.

Sequent calculus syntax

Formulas are are given by:

$$A ::= P \mid \overline{P} \mid \top \mid \bot \mid (A \land A) \mid (A \lor A) \mid \Box A \mid \Diamond A.$$

Sequents are finite multisets of formulas.

For a sequent $\Gamma = A_1, \dots, A_n$, its intended interpretation as a formulas is

$$\Gamma^{\sharp} := egin{cases} oxedsymbol{oxedsymbol{oxedsymbol{eta}}} & ext{if } n = 0, \ A_1 ee \ldots ee A_n & ext{otherwise}. \end{cases}$$

Standard sequent calculus $K4_{Seq}$

Axioms

$$\Gamma, A, \overline{A}$$
 Γ, \top

Rules

$$\wedge \, \frac{\Gamma, A \qquad \Gamma, B}{\Gamma, A \wedge B} \qquad \vee \, \frac{\Gamma, A, B}{\Gamma, A \vee B}$$

$$\Box \frac{\Gamma, \Diamond \Gamma, A}{\Diamond \Gamma, \Box A, \Delta}$$

Standard sequent calculus GL_{Seq}

$$GL_{Seq}=K4_{Seq}$$
 + the modal rule \Box_{GL}
$$\Box_{GL} \ \dfrac{\Gamma, \Diamond \Gamma, \Diamond \overline{A}, A}{\Diamond \Gamma, \Box A, \Delta}$$

Circular sequent calculus $\mathsf{GL}_{\mathsf{CSeq}}$

$$GL_{CSeq} = K4_{Seq} + circular proofs$$

Circular sequent calculus GL_{CSeq}

$$\mathit{GL}_{\mathit{CSeq}} = \mathit{K4}_{\mathit{Seq}} + \mathsf{circular}$$
 proofs

A circular proof of the Löb's axiom

$$\begin{array}{c|c}
 & \Box P \wedge \overline{P}, \diamondsuit (\Box P \wedge \overline{P}), P \\
 & & \Box P, \diamondsuit (\Box P \wedge \overline{P}), P \\
\hline
 & & \Box P, \diamondsuit (\Box P \wedge \overline{P}), P \\
\hline
 & & \Box P \wedge \overline{P}, \diamondsuit (\Box P \wedge \overline{P}), P \\
\hline
 & & & & & & & & \\
\hline
 & & & & & & & \\
\hline
 & & & & & & & \\
\hline
 & & & & & & & \\
\hline
 & & & & & & & \\
\hline
 & & & & & & & \\
\hline
 & & & & & & & \\
\hline
 & & & & & & & \\
\hline
 & & & & & & & \\
\hline
 & & & & & & & \\
\hline
 & & & & & & & \\
\hline
 & & & & & & & \\
\hline
 & & & & & & & \\
\hline
 & & & & & & & \\
\hline
 & & & & & & & \\
\hline
 & & & & & & & \\
\hline
 & & & & & & & \\
\hline
 & & & & & & & \\
\hline
 & & & & & & & \\
\hline
 & & & & & & & \\
\hline
 & & & & & & & \\
\hline
 & & & & & & & \\
\hline
 & & & & & & \\
\hline$$

Theorem $GL_{Seq} \vdash \Gamma \Leftrightarrow GL_{CSeq} \vdash \Gamma$

An application: Lyndon interpolation syntactically

Craig interpolation

If $L \vdash A \rightarrow B$, then there is a formula C containing only common variables of A and B such that $L \vdash A \rightarrow C$, $L \vdash C \rightarrow B$.

Lyndon interpolation

is a strengthening of the Craig one by the additional requirement:

every propositional variable that has a positive (negative) occurrence in C must also have positive (negative) occurrences both in A and B.

Craig interpolation

If $L \vdash A \rightarrow B$, then there is a formula C containing only common variables of A and B such that $L \vdash A \rightarrow C$, $L \vdash C \rightarrow B$.

Lyndon interpolation

is a strengthening of the Craig one by the additional requirement:

every propositional variable that has a positive (negative) occurrence in C must also have positive (negative) occurrences both in A and B.

Interpolation properties of GL

Craig (Smoryński 1978, Boolos 1979)

Craig interpolation

If $L \vdash A \rightarrow B$, then there is a formula C containing only common variables of A and B such that $L \vdash A \rightarrow C$, $L \vdash C \rightarrow B$.

Lyndon interpolation

is a strengthening of the Craig one by the additional requirement:

every propositional variable that has a positive (negative) occurrence in C must also have positive (negative) occurrences both in A and B.

Interpolation properties of GL

- Craig (Smoryński 1978, Boolos 1979)
- Uniform (Shavrukov 1993)

Craig interpolation

If $L \vdash A \rightarrow B$, then there is a formula C containing only common variables of A and B such that $L \vdash A \rightarrow C$, $L \vdash C \rightarrow B$.

Lyndon interpolation

is a strengthening of the Craig one by the additional requirement:

every propositional variable that has a positive (negative) occurrence in C must also have positive (negative) occurrences both in A and B.

Interpolation properties of GL

- Craig (Smoryński 1978, Boolos 1979)
- Uniform (Shavrukov 1993)
- Lyndon (Shamkanov, 2011)

Definition

For a sequent Γ_1, Γ_2 , the expression of the form $\Gamma_1 \mid \Gamma_2$ is called its splitting.

Definition

An interpolant of a split sequent $\Gamma_1 \mid \Gamma_2$ is defined as an interpolant of the formula $\overline{\Gamma}_1^\sharp \to \Gamma_2^\sharp$.

Definition

For a sequent Γ_1, Γ_2 , the expression of the form $\Gamma_1 \mid \Gamma_2$ is called its splitting.

Definition

An interpolant of a split sequent $\Gamma_1 \mid \Gamma_2$ is defined as an interpolant of the formula $\overline{\Gamma}_1^\sharp \to \Gamma_2^\sharp$.

Note that an interpolant of a split sequent $\overline{A} \mid B$ is an interpolant for the formula $A \to B$.

Interpolation: proof-theoretic strategy

Basic observations

Given an application of an inference rule, every splitting of the conclusion produces splittings of the premises preserving ancestor relationship. For example:

$$\square \frac{\Gamma_1, \Diamond \Gamma_1, A \mid \Gamma_2, \Diamond \Gamma_2}{\Diamond \Gamma_1, \square A, \Delta_1 \mid \Diamond \Gamma_2, \Delta_2};$$

Moreover, there is an explicit definition of the interpolant for the split sequent in the conclusion from interpolants of the split sequents in the premises.

Interpolation: proof-theoretic strategy

▶ Given a proof of a sequent Γ_1 , Γ_2 , construct an interpolant for the split sequent $\Gamma_1 \mid \Gamma_2$ by induction on the structure of the proof.

Interpolation: proof-theoretic strategy

▶ Given a proof of a sequent Γ_1 , Γ_2 , construct an interpolant for the split sequent $\Gamma_1 \mid \Gamma_2$ by induction on the structure of the proof.

But circular proofs are not well-founded!

Proof sketch:

- given a circular proof Γ_1, Γ_2 , construct a split circular proof of $\Gamma_1 \mid \Gamma_2$
- ► from the split circular proof, construct an interpolant *C* by the fixed-point theorem
- prove that C is indeed an interpolant using admissibility of the Löb's rule and that it satisfies restrictions on occurrences of propositional variables

Proof sketch:

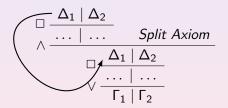
 \blacktriangleright given a circular proof $\Gamma_1,\Gamma_2,$ construct a split circular proof of $\Gamma_1\mid\Gamma_2$

Proposition

If there is a circular proof of Γ_1,Γ_2 , then there is a split circular proof of $\Gamma_1\mid\Gamma_2.$

Proposition

If there is a circular proof of Γ_1, Γ_2 , then there is a split circular proof of $\Gamma_1 \mid \Gamma_2$.



Proof sketch:

► from the split circular proof, construct an interpolant *C* by the fixed-point theorem

$$(\top) \ \Gamma_1 \mid \top, \Gamma_2 \qquad (\bot) \ \Gamma_1, \top \mid \Gamma_2$$

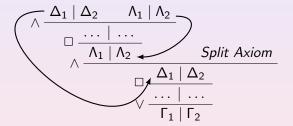
$$(\bot) \ \Gamma_1, A, \overline{A} \mid \Gamma_2 \qquad \quad (\overline{A}) \ \Gamma_1, A \mid \overline{A}, \Gamma_2 \qquad \quad (\top) \ \Gamma_1 \mid A, \overline{A}, \Gamma_2$$

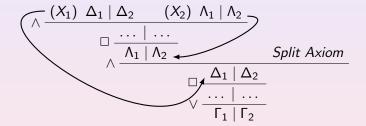
$$\wedge_{I} \frac{(C) \ \Gamma_{1}, A \mid \Gamma_{2} \quad (D) \ \Gamma_{1}, B \mid \Gamma_{2}}{(C \lor D) \ \Gamma_{1}, A \land B \mid \Gamma_{2}} \qquad \vee_{I} \frac{(C) \ \Gamma_{1}, A, B \mid \Gamma_{2}}{(C) \ \Gamma_{1}, A \lor B \mid \Gamma_{2}}$$

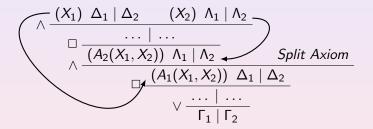
$$\wedge_{r} \frac{(C) \Gamma_{1} | \Gamma_{2}, A \qquad (D) \Gamma_{1} | \Gamma_{2}, B}{(C \wedge D) \Gamma_{1} | \Gamma_{2}, A \wedge B} \qquad \forall_{r} \frac{(C) \Gamma_{1} | \Gamma_{2}, A, B}{(C) \Gamma_{1} | \Gamma_{2}, A \vee B}$$

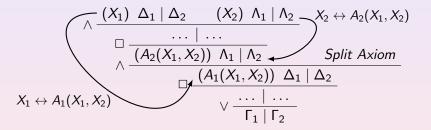
$$\Box_{I} \frac{(C) \Gamma_{1}, \Diamond \Gamma_{1}, A \mid \Gamma_{2}, \Diamond \Gamma_{2}}{(\Diamond C) \Diamond \Gamma_{1}, \Box A, \Delta_{1} \mid \Diamond \Gamma_{2}, \Delta_{2}}$$

$$\Box_r \frac{(C) \ \Gamma_1, \Diamond \Gamma_1 \mid \Gamma_2, \Diamond \Gamma_2, A}{(\Box C) \ \Diamond \Gamma_1, \Delta_1 \mid \Diamond \Gamma_2, \Box A, \Delta_2}$$









Fixed-Point Theorem (de Jongh, 1975, Sambin, 1975)

Let A(P) be a formula in which P only occurs within the scope of modality. Then there is a formula F such that $Var(F) \subset Var(A) \setminus \{P\}$ and

$$GL \vdash \boxdot(P \leftrightarrow A(P)) \leftrightarrow \boxdot(P \leftrightarrow F)$$
.

Moreover, if A(P) is positive in P, then $Var^+(F) \subset Var(A)^+ \setminus \{P\}$ and $Var^-(F) \subset Var(A)^-$.

 $\Box B$ is an abbreviation for $B \land \Box B$.