Hamming metrics and products of modal logics

Ilya Shapirovsky Joint work with Andrey Kudinov and Valentin Shehtman.

June 7, 2013

$ML(\lozenge)$

```
Modal formulas (the unimodal case): PV = \{p_1, p_2, \dots\} — variables; \neg, \lor; \diamondsuit — unary connective. (\Box \varphi — abbreviation for \neg \diamondsuit \neg \varphi.)
```

$ML(\lozenge)$

```
Modal formulas (the unimodal case): PV = \{p_1, p_2, \dots\} — variables; \neg, \lor; \diamondsuit — unary connective. (\Box \varphi — abbreviation for \neg \diamondsuit \neg \varphi.) frame: \mathsf{F} = (W, R), where W \neq \varnothing, R \subseteq W \times W. valuation: \theta : PV \to \mathcal{P}(W). model: (\mathsf{F}, \theta).
```

$$\begin{array}{lll} \mathsf{M}, w \vDash p & \iff & w \in \theta(p); \\ \mathsf{M}, w \vDash \neg \varphi & \iff & \mathsf{M}, w \not\vDash \varphi; \\ \mathsf{M}, w \vDash \varphi \lor \psi & \iff & \mathsf{M}, w \vDash \varphi \text{ or } \mathsf{M}, w \vDash \psi; \\ \mathsf{M}, w \vDash \Diamond \varphi & \iff & \exists v (wRv \& \mathsf{M}, v \vDash \varphi). \end{array}$$

$$ML(\lozenge_0,\ldots,\lozenge_{n-1})$$

```
n-modal formulas: PV = \{p_1, p_2, \dots\} — variables; \neg, \lor; \diamondsuit_0, \dots, \diamondsuit_{n-1} — unary connectives. n-frame: (W, R_0, \dots, R_{n-1}).
```

$$M, w \models \Diamond_i \varphi \iff \exists v (wR_i v \& M, v \models \varphi).$$

A – is an alphabet (a nonempty set),

$$\mathbf{x} = (x_0, \dots, x_{n-1}), \mathbf{y} = (y_0, \dots, y_{n-1}) \in A^n$$

 $h(\mathbf{x}, \mathbf{y})$ is the *Hamming distance* between \mathbf{x} and \mathbf{y} :

$$h(\mathbf{x},\mathbf{y})=|\{i\mid x_i\neq y_i\}|.$$

A – is an alphabet (a nonempty set), $\mathbf{x} = (x_0, \dots, x_{n-1}), \mathbf{y} = (y_0, \dots, y_{n-1}) \in A^n$

 $h(\mathbf{x}, \mathbf{y})$ is the *Hamming distance* between \mathbf{x} and \mathbf{y} :

$$h(\mathbf{x},\mathbf{y})=|\{i\mid x_i\neq y_i\}|.$$

Consider frames (A^n, H) , (A^n, \overline{H}) : for $\mathbf{x}, \mathbf{y} \in A^n$, $\mathbf{x}H\mathbf{y} \iff h(\mathbf{x}, \mathbf{y}) = 1.$ $\mathbf{x}\overline{H}\mathbf{y} \iff h(\mathbf{x}, \mathbf{y}) \leq 1.$ A – is an alphabet (a nonempty set),

$$\mathbf{x} = (x_0, \dots, x_{n-1}), \mathbf{y} = (y_0, \dots, y_{n-1}) \in A^n$$

 $h(\mathbf{x}, \mathbf{y})$ is the *Hamming distance* between \mathbf{x} and \mathbf{y} :

$$h(\mathbf{x},\mathbf{y})=|\{i\mid x_i\neq y_i\}|.$$

Consider frames (A^n, H) , (A^n, \overline{H}) : for $\mathbf{x}, \mathbf{y} \in A^n$,

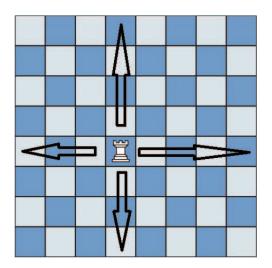
$$xHy \iff h(x,y) = 1.$$

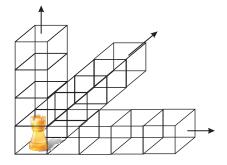
$$x\overline{H}y \iff h(x,y) \leq 1.$$

 $H(x) = \{y \mid xHy\}$ is the sphere with the center x of radius 1.

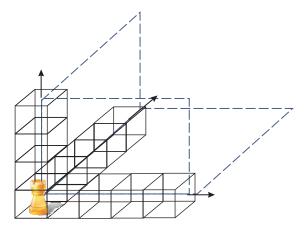
$$\overline{H}(x) = \{y \mid x\overline{H}y\}$$
 is the ball with the center x of radius 1.

|A| = 8, n = 2, a ball of radius 1:





The ball with the center x of radius r is the set of all points that the (space)rook can reach from x in at most r moves.



The ball with the center x of radius r is the set of all points that the (space)rook can reach from x in at most r moves.

Modal products.

$$(W_1,R_1) imes\cdots imes(W_n,R_n)$$
 is the *n*-frame $(W_1 imes\cdots imes W_n,R'_1,\ldots,R'_n),$

where

$$(w_1,\ldots,w_n)R_i'(v_1,\ldots,v_n)\Longleftrightarrow w_iR_iv_i \text{ and } w_k=v_k \text{ for } k\neq i.$$

For logics
$$L_1, \ldots, L_n$$
,
 $L_1 \times \cdots \times L_n := Log(\{F_1 \times \cdots \times F_n \mid F_1 \vDash L_1, \ldots, F_n \vDash L_n\})$.

Consider a frame (A, \neq) and the product

$$(A,\neq)^n=(A^n,\neq_0,\ldots,\neq_{n-1}),$$

i.e.,

$$\mathbf{x} \neq_i \mathbf{y} \iff x_i \neq y_i \text{ and } x_j = y_j \text{ for } j \neq i.$$

Consider a frame (A, \neq) and the product

$$(A, \neq)^n = (A^n, \neq_0, \dots, \neq_{n-1}),$$

i.e.,

$$\mathbf{x} \neq_i \mathbf{y} \iff x_i \neq y_i \text{ and } x_j = y_j \text{ for } j \neq i.$$

Then

$$(A^n, H) = (A^n, \neq_0 \cup \cdots \cup \neq_{n-1}).$$

Consider a frame (A, \neq) and the product

$$(A, \neq)^n = (A^n, \neq_0, \dots, \neq_{n-1}),$$

i.e.,

$$\mathbf{x} \neq_i \mathbf{y} \iff x_i \neq y_i \text{ and } x_j = y_j \text{ for } j \neq i.$$

Then

$$(A^n, H) = (A^n, \neq_0 \cup \cdots \cup \neq_{n-1}).$$

$$t^{(n)}: ML(\lozenge) \to ML(\lozenge_0, \ldots, \lozenge_{n-1})$$

$$t^{(n)}(\Diamond\varphi):=\Diamond_0t^{(n)}(\varphi)\vee\cdots\vee\Diamond_{n-1}t^{(n)}(\varphi).$$

Trivial fact: if $A \neq \emptyset$, n > 0, $\theta : PV \rightarrow \mathcal{P}(A^n)$, φ , $\mathbf{x} \in A^n$, then

$$((A, \neq)^n, \theta), \mathbf{x} \models t^{(n)}(\varphi) \iff ((A^n, H), \theta), \mathbf{x} \models \varphi;$$

so $Log(A^n, H)$ is a fragment of $Log((A, \neq)^n)$.

Consider a frame $(A, A \times A)$ and the product

$$(A, A \times A)^n = (A^n, R_0, \ldots, R_{n-1}),$$

i.e.,

$$\mathbf{x}R_i\mathbf{y} \iff x_j = y_j \text{ for } j \neq i.$$

Then

$$(A^n, \overline{H}) = (A^n, R_0 \cup \cdots \cup R_{n-1}).$$

Consider a frame $(A, A \times A)$ and the product

$$(A, A \times A)^n = (A^n, R_0, \ldots, R_{n-1}),$$

i.e.,

$$\mathbf{x}R_i\mathbf{y} \iff x_j = y_j \text{ for } j \neq i.$$

Then

$$(A^n, \overline{H}) = (A^n, R_0 \cup \cdots \cup R_{n-1}).$$

$$\overline{t}^{(n)}: \mathit{ML}(\lozenge) \to \mathit{ML}(\lozenge_0, \ldots, \lozenge_{n-1})$$

$$\overline{t}^{(n)}(\Diamond\varphi) := \Diamond_0 \overline{t}^{(n)}(\varphi) \vee \cdots \vee \Diamond_{n-1} \overline{t}^{(n)}(\varphi).$$

$$((A, A \times A)^n, \theta), \mathbf{x} \vDash \overline{t}^{(n)}(\varphi) \iff ((A^n, \overline{H}), \theta), \mathbf{x} \vDash \varphi.$$

 $Log(A^n, \overline{H})$ is a fragment of $Log((A, A \times A)^n)$.

- ► Non-finite axiomatizability
- ► Undecidability
- Decidability

Non-finite axiomatizability

Definition

Let L be a modal logic. For $m \ge 1$, put

$$L\lceil m = \{\varphi \in L \mid PV(\varphi) \subseteq \{p_1, \ldots, p_m\}\}, L\lceil 0 = \{\varphi \in L \mid PV(\varphi) = \varnothing\}.$$

These sets of formulas are called the m-fragments of L.

Theorem

If A is infinite, then for any n > 0 the logic $Log(A^n, H)$ is not axiomatizable by any of its m-fragments.

If A is infinite, then the logic $Log(A, \neq)$ is not axiomatizable by any of its m-fragments.

If A is infinite, then the logic $Log(A, \neq)$ is not axiomatizable by any of its m-fragments.

Remark:

This gives us a simple example of a modal logic which is not finitely axiomatizable, but has a finitely axiomatizable conservative extension: the logic $Log(\mathbb{R}^2, \neq)$ is not f.a., whereas some topological modal logics with the difference modality of \mathbb{R}^2 have finite axiomatizations [Kudinov, 2005], [Kudinov, Shehtman, 2011].

Suppose B is nonempty, A is infinite. Then $Log((A, \neq) \times (B, \neq))$ is not finite-variable axiomatizable.

Suppose B is nonempty, A is infinite. Then $Log((A, \neq) \times (B, \neq))$ is not finite-variable axiomatizable.

Recently [C.Hampson, A. Kurucz, 2012] a similar result was obtained for products with the minimal difference logic \mathbf{DL} : all logics in the interval between $\mathbf{K} \times \mathbf{DL}$ and $\mathbf{S5} \times \mathbf{DL}$ are not finite-variable axiomatizable.

Undecidability

Theorem

For $n \ge 2$, there exists a polynomial-time translation $f^{(n)}$ such that for any n-modal formula φ we have:

$$\varphi$$
 is $(A, A \times A)^n$ -satisfiable $\iff f^{(n)}(\varphi)$ is (A^n, H) -satisfiable.

Corollary

Let $\mathfrak A$ be a class of nonempty sets, n>0. If the logic $Log(\{(A,A\times A)^n\mid A\in \mathfrak A\})$ is undecidable, then the logic $Log(\{(A^n,H)\mid A\in \mathfrak A\})$ is undecidable.

Since all logics $S5^n$, n > 2, are undecidable, we have

Corollary

If a class of nonempty sets $\mathfrak A$ contains an infinite set, then the logic $Log(\{(A^n,H)\mid A\in \mathfrak A\})$ is undecidable.

TB is the logic of all (finite) symmetric reflexive frames.

DB is the logic of all (finite) symmetric serial (i.e., $\forall x \exists y \ xRy$ holds) frames.

These logics have finite axiomatizations (very simple). So they are decidable (since they have the fmp); moreover — are PSPACE-complete).

For functions $f, g: I \rightarrow A$, put

$$f Hg \iff |\{i \mid i \in I, \ f(i) \neq g(i)\}| = 1.$$

Theorem

$$Log(\{0,1\}^{\omega},H)=\mathbf{DB}.$$

For functions $f, g: I \rightarrow A$, put

$$f H g \iff |\{i \mid i \in I, \ f(i) \neq g(i)\}| = 1.$$

Theorem

$$Log(\{0,1\}^{\omega},H)=DB.$$

 $U \triangle_1 V \iff U \triangle V \text{ is a singleton.}$

Corollary

$$Log(\mathcal{P}(\omega), \triangle_1) = DB$$
.

For functions $f, g: I \rightarrow A$, put

$$f H g \iff |\{i \mid i \in I, \ f(i) \neq g(i)\}| = 1.$$

Theorem

$$Log(\{0,1\}^{\omega},H)=DB.$$

$$U \triangle_1 V \iff U \triangle V \text{ is a singleton.}$$

Corollary

$$Log(\mathcal{P}(\omega), \triangle_1) = DB$$
.

$$f \overline{H} g \iff f H g \text{ or } f = g.$$

 $S \triangle_{<1} S' \iff |S \triangle S'| \le 1.$

Corollary

If I is infinite, |A| > 1, then

$$Log(A^{I}, \overline{H}) = TB; Log(\mathcal{P}(I), \triangle_{<1}) = TB.$$

- ► Non-finite axiomatizability
- ► Undecidability
- Decidability

Some open problems

Problem

Does there exist a finitely axiomatizable logic Log(ω^n , \overline{H}), for n = 2, 3, ...?

 $Log(\omega^2, \overline{H})$ is decidable, because $S5^2$ is decidable; $Log(\omega^2, H)$ is decidable, because $Log((\omega, \neq)^2)$ is decidable. For n > 2, $Log((\omega, \neq)^2)$ is undecidable, since $S5^n$ is undecidable.

Problem

Is there a decidable logic Log(ω^n, \overline{H}), $n = 3, 4, \dots$?

Problem

$$TB = Log(2^{\omega}, \overline{H}) \stackrel{?}{=} \bigcap_{n < \omega} Log(2^{n}, \overline{H})$$

Non-finite axiomatizability

Let L be a logic.

$$L\lceil m = \{\varphi \in L \mid PV(\varphi) \subseteq \{p_1, \ldots, p_m\}\}.$$

Frames F, G are called *m*-equivalent (notation: $F \sim_m G$), if $Log(F)\lceil m = Log(G) \lceil m$.

Proposition (L. Maksimova, D. Skvortsov, V. Shehtman, 1979)

Consider a logic Λ and suppose that for every m there exist frames G_m , G'_m such that $G_m \sim_m G'_m$, $\Lambda \subseteq Log(G_m)$, $\Lambda \not\subseteq Log(G'_m)$. Then Λ is not finitely axiomatizable, and moreover, not axiomatizable by any of its m-fragment.

Let *L* be a logic.

$$L\lceil m = \{\varphi \in L \mid PV(\varphi) \subseteq \{p_1, \ldots, p_m\}\}.$$

Frames F, G are called *m*-equivalent (notation: $F \sim_m G$), if $Log(F)\lceil m = Log(G) \lceil m$.

Proposition (L. Maksimova, D. Skvortsov, V. Shehtman, 1979)

Consider a logic Λ and suppose that for every m there exist frames G_m , G'_m such that $G_m \sim_m G'_m$, $\Lambda \subseteq Log(G_m)$, $\Lambda \not\subseteq Log(G'_m)$. Then Λ is not finitely axiomatizable, and moreover, not axiomatizable by any of its m-fragment.

$$\mathsf{K}_m := (\{0,\ldots,m-1\},\neq),$$

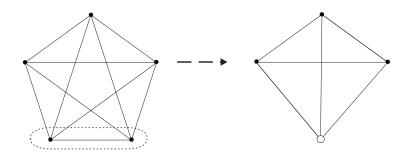
$$\mathsf{K}'_m := (\{0,\ldots,m-1\},R_m)$$
, where $iR_m j \iff i \neq j$ or $i = j = m-1$.

For any $m \ge 0$ we have: $K_{2^m+1} \sim_m K'_{2^m}$.

For an infinite A, for any $m \ge 0$:

$$Log(A^n, H) \nsubseteq K_m$$
,

$$Log(A^n, H) \subseteq Log(K'_m)$$
.



Some open problems

Problem

Does there exist a finitely axiomatizable logic Log(ω^n , \overline{H}), for n = 2, 3, ...?

 $Log(\omega^2, \overline{H})$ is decidable, because $\mathbf{S5}^2$ is decidable; $Log(\omega^2, H)$ is decidable, because $Log((\omega, \neq)^2)$ is decidable. For n > 2, $Log((\omega, \neq)^2)$ is undecidable, since $\mathbf{S5}^n$ is undecidable.

Problem

Is there a decidable logic Log(ω^n, \overline{H}), $n = 3, 4, \dots$?

Problem

$$TB = Log(2^{\omega}, \overline{H}) \stackrel{?}{=} \bigcap_{n < \omega} Log(2^{n}, \overline{H})$$

Undecidability.

Undecidability.

We will "restore" the modalities of $(A, A \times A)^n$ via the unimodal box interpreted by the H relation.

Undecidability

$$\square^0 \varphi = \varphi, \ \square^{l+1} \varphi = \square \square^l \varphi, \ \square^{\leq l} \varphi = \bigwedge_{0 \leq i \leq l} \square^i \varphi.$$

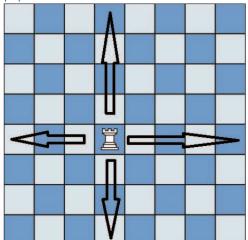
 $\square^{\leq n}$ acts like the universal modality on (A^n, H) .

Undecidability

$$\square^0 \varphi = \varphi, \ \square^{l+1} \varphi = \square \square^l \varphi, \ \square^{\leq l} \varphi = \bigwedge_{0 \leq i \leq l} \square^i \varphi.$$

 $\square^{\leq n}$ acts like the universal modality on (A^n, H) .

$$|A| = 8$$
, $n = 2$:



For each set $U \subseteq n = \{0, ..., n-1\}$ we fix a variable p_U . Let $sets^{(n)}$ be the conjunction of the following formulas:

$$p_{\varnothing} \wedge \neg \Diamond p_{\varnothing} \tag{1}$$

$$\square^{\leq n} \left(\bigvee_{U \subseteq n} p_U \wedge \bigwedge_{U,V \subseteq n, \ U \neq V} (p_U \to \neg p_V) \right) \tag{2}$$

$$\Box^{\leq n} \left(\bigwedge_{U,V \subseteq n, \ |U \triangle V| = 1} (p_U \to \Diamond p_V) \right) \tag{3}$$

$$\Box^{\leq n} \left(\bigwedge_{U,V \subseteq n, \ |U \triangle V| > 1} (p_U \to \neg \Diamond p_V) \right) \tag{4}$$

(Note that if we also add the conjuncts $p_U \to \neg \Diamond p_U$ for all nonempty $U \subseteq n$, then we obtain the frame formula for the frame $(\mathcal{P}(n), \triangle_1)$ at the point \varnothing .)

$$sets^{(n)} := p_{\varnothing} \wedge \neg \lozenge p_{\varnothing} \wedge \Box^{\leq n} \left(\bigvee_{U \subseteq n} p_{U} \wedge \bigwedge_{U,V \subseteq n, \ U \neq V} (p_{U} \rightarrow \neg p_{V}) \right) \wedge$$
 $\Box^{\leq n} \left(\bigwedge_{U,V \subseteq n, \ |U \triangle V| = 1} (p_{U} \rightarrow \lozenge p_{V}) \wedge \bigwedge_{U,V \subseteq n, \ |U \triangle V| > 1} (p_{U} \rightarrow \neg \lozenge p_{V}) \right)$

The meaning of the formula $sets^{(n)}$ is explained by the following key fact.

Lemma

Let |A| > 1, $((A^n, H), \theta)$, $\mathbf{r} \models sets^{(n)}$. Then there exists a unique permutation $\sigma : n \to n$ such that for any $\mathbf{x} \in A^n$ and $V \subseteq n$,

$$((A^n, H), \theta), \mathbf{x} \models p_V \iff D_{\sigma}(\mathbf{r}, \mathbf{x}) = V,$$

where

$$D_{\sigma}(\mathbf{x}, \mathbf{y}) = \{i \mid x_{\sigma(i)} \neq y_{\sigma(i)}\}.$$

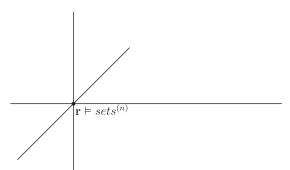
$$D_{\sigma}(\mathbf{x},\mathbf{y}) := \{i \mid x_{\sigma(i)} \neq y_{\sigma(i)}\}; D_{\sigma}(\mathbf{r},\mathbf{x}) = V \iff ((A^{n},H),\theta), \mathbf{x} \models p_{V}.$$

$$plane_i^{(n)} := \bigvee_{U \subseteq n, \ i
otin U} p_U.$$

$$\Diamond_{i}^{(n)}\varphi = \varphi \lor ((plane_{i}^{(n)} \to \Diamond(\neg plane_{i}^{(n)} \land \varphi)) \land \\ \land (\neg plane_{i}^{(n)} \to \Diamond(plane_{i}^{(n)} \land (\varphi \lor (\Diamond(\neg plane_{i}^{(n)} \land \varphi)))))).$$

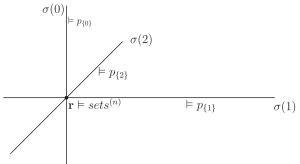
$$D_{\sigma}(\mathbf{x}, \mathbf{y}) := \{i \mid x_{\sigma(i)} \neq y_{\sigma(i)}\}; D_{\sigma}(\mathbf{r}, \mathbf{x}) = V \iff ((A^{n}, H), \theta), \mathbf{x} \models p_{V}.$$

$$plane_i^{(n)} := \bigvee_{U \subseteq n, \ i \notin U} p_U.$$



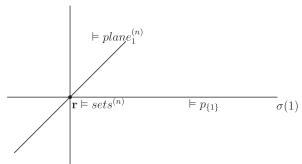
$$plane_i^{(n)} := \bigvee_{U \subseteq n, \ i
ot\in U} p_U.$$

$$\Diamond_{i}^{(n)}\varphi = \varphi \lor ((plane_{i}^{(n)} \to \Diamond(\neg plane_{i}^{(n)} \land \varphi)) \land \\ \land (\neg plane_{i}^{(n)} \to \Diamond(plane_{i}^{(n)} \land (\varphi \lor (\Diamond(\neg plane_{i}^{(n)} \land \varphi)))))).$$



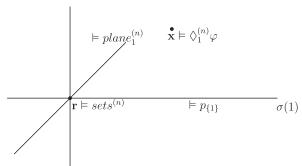
$$plane_i^{(n)} := \bigvee_{U \subseteq n, \ i
ot\in U} p_U.$$

$$\Diamond_{i}^{(n)}\varphi = \varphi \lor ((plane_{i}^{(n)} \to \Diamond(\neg plane_{i}^{(n)} \land \varphi)) \land \\ \land (\neg plane_{i}^{(n)} \to \Diamond(plane_{i}^{(n)} \land (\varphi \lor (\Diamond(\neg plane_{i}^{(n)} \land \varphi))))).$$



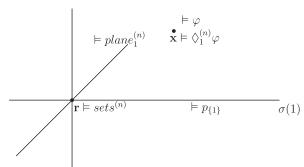
$$plane_i^{(n)} := \bigvee_{U \subseteq n, \ i
ot\in U} p_U.$$

$$\Diamond_{i}^{(n)}\varphi = \varphi \lor ((plane_{i}^{(n)} \to \Diamond(\neg plane_{i}^{(n)} \land \varphi)) \land \\ \land (\neg plane_{i}^{(n)} \to \Diamond(plane_{i}^{(n)} \land (\varphi \lor (\Diamond(\neg plane_{i}^{(n)} \land \varphi)))))).$$



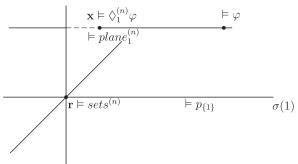
$$plane_i^{(n)} := \bigvee_{U \subseteq n, \ i
ot\in U} p_U.$$

$$\Diamond_{i}^{(n)}\varphi = \varphi \lor ((plane_{i}^{(n)} \to \Diamond(\neg plane_{i}^{(n)} \land \varphi)) \land \\ \land (\neg plane_{i}^{(n)} \to \Diamond(plane_{i}^{(n)} \land (\varphi \lor (\Diamond(\neg plane_{i}^{(n)} \land \varphi)))))).$$



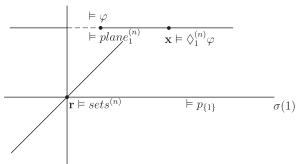
$$plane_i^{(n)} := \bigvee_{U \subseteq n, \ i
ot\in U} p_U.$$

$$\Diamond_{i}^{(n)}\varphi = \varphi \lor ((plane_{i}^{(n)} \to \Diamond(\neg plane_{i}^{(n)} \land \varphi)) \land \\ \land (\neg plane_{i}^{(n)} \to \Diamond(plane_{i}^{(n)} \land (\varphi \lor (\Diamond(\neg plane_{i}^{(n)} \land \varphi))))).$$



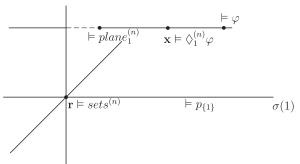
$$plane_i^{(n)} := \bigvee_{U \subseteq n, \ i
ot\in U} p_U.$$

$$\Diamond_{i}^{(n)}\varphi = \varphi \lor ((plane_{i}^{(n)} \to \Diamond(\neg plane_{i}^{(n)} \land \varphi)) \land \\ \land (\neg plane_{i}^{(n)} \to \Diamond(plane_{i}^{(n)} \land (\varphi \lor (\Diamond(\neg plane_{i}^{(n)} \land \varphi)))))).$$



$$plane_i^{(n)} := \bigvee_{U \subseteq n, \ i
ot\in U} p_U.$$

$$\Diamond_{i}^{(n)}\varphi = \varphi \lor ((plane_{i}^{(n)} \to \Diamond(\neg plane_{i}^{(n)} \land \varphi)) \land \\ \land (\neg plane_{i}^{(n)} \to \Diamond(plane_{i}^{(n)} \land (\varphi \lor (\Diamond(\neg plane_{i}^{(n)} \land \varphi)))))).$$



For a formula φ in the *n*-modal language $ML(\lozenge_0, \ldots, \lozenge_{n-1})$, we define the unimodal formula $[\varphi]^{(n)}$:

$$[p]^{(n)} = p \text{ for } p \in PV; \quad [\phi \wedge \psi]^{(n)} = [\phi]^{(n)} \wedge [\psi]^{(n)}; \quad [\neg \phi]^{(n)} = \neg([\phi]^{(n)});$$

 $[\lozenge_i \phi]^{(n)} = \lozenge_i^{(n)} [\phi]^{(n)}.$

If |A| > 1, $((A^n, H), \theta)$, $\mathbf{r} \models sets^{(n)}$, $(A, A \times A)^n = (A^n, R_0, \dots R_{n-1})$, then for any n-modal formula φ with $PV(\varphi) \cap PV(sets^{(n)}) = \emptyset$, for any $\mathbf{x} \in A^n$, we have

$$((A^n, R_{\sigma(0)}, \dots R_{\sigma(n-1)}), \theta), \mathbf{x} \vDash \varphi \iff ((A^n, H), \theta), \mathbf{x} \vDash [\varphi]^{(n)}$$

Theorem

For |A| > 1, $n \ge 2$, for any n-modal formula φ that does not share variables with sets⁽ⁿ⁾, we have:

$$\varphi$$
 is $(A, A \times A)^n$ -satisfiable \iff sets⁽ⁿ⁾ \wedge $[\varphi]^{(n)}$ is (A^n, H) -satisfiable.

Some open problems

Problem

Does there exist a finitely axiomatizable logic Log(ω^n , \overline{H}), for n = 2, 3, ...?

 $Log(\omega^2, \overline{H})$ is decidable, because $\mathbf{S5}^2$ is decidable; $Log(\omega^2, H)$ is decidable, because $Log((\omega, \neq)^2)$ is decidable. For n > 2, $Log((\omega, \neq)^2)$ is undecidable, since $\mathbf{S5}^n$ is undecidable.

Problem

Is there a decidable logic Log(ω^n, \overline{H}), $n = 3, 4, \dots$?

Problem

$$TB = Log(2^{\omega}, \overline{H}) \stackrel{?}{=} \bigcap_{n < \omega} Log(2^{n}, \overline{H})$$

Thank you!